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Introduction

Computational complexity is a rapidly growing field of mathematics. With new
knowledge, many new problems have arisen; of these, those which are NP-
complete are of singular interest. This thesis discusses several problems which
are in some sense near the “boundary” of NP-completeness. We focus on two
related problems: the Even Cycle Problem for directed graphs, and the L-Matrix
Problem. We explore relationships among these two and other problems in
computational complexity, both solved and unsolved. Appendices on the theory
of NP-completeness and directed graphs are provided for readers unfamiliar
with these topics, and an additional appendix lists the complexities of many
relatives of the Even Cycle Problem, including those known to be polynomial-
time equivalent to it.

An even cycle is a simple cycle of even length (one that uses an even
number of edges). The Even Cycle Problem for directed graphs asks if there an
efficient (polynomial-time) algorithm to answer the following:

Instance: A directed graph.
Question: Does the digraph have an even cycle?

We will discover that the Even Cycle Problem is equivalent to many other
problems, such as the L-Matrix Problem from mathematical economics:

Instance: A square matrix.
Question: Is the matrix an L-matrix?

An L-matrix is a matrix with signed entries such that every real matrix with the
same size and sign pattern as it has linearly independent columns.

These problems are all close to the boundary of NP-completeness in the
sense that they strongly resemble certain problems known to admit polynomial-
time algorithms, yet they also strongly resemble other problems known to be
NP-complete. For example, it is easy to construct a polynomial-time algorithm to
test a directed graph for the presence of odd cycles and also for the presence of
even closed walks. However, localized version of these problems (e.g., looking
for cycles of either parity passing through a given vertex) are NP-complete.
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Recognizing L-matrices is similar to recognizing S-matrices and matrices with
signed permanent — both problems admit efficient algorithms — yet in the
rectangular case (even for “almost square” matrices), recognizing L-matrices is
NP-complete. The complexity of the Even Cycle Problem and the L-Matrix
Problem for square matrices remain unknown.

In the first chapter, we explore the Even Cycle Problem in greater depth,
and also describe a few related graph-theoretic problems. The second chapter
focuses on the L-Matrix Problem, affiliated concepts, and connections with the
Even Cycle Problem for directed graphs. We journey beyond these topics in the
third chapter, examining questions about permanents, Pfaffians, and labelled
digraphs, and extending results of the previous two chapters to problems with a
polytopal flavor. This final chapter concludes with a discussion of open problems
and suggested topics for future research.



Chapter 1: Even Cycles in Directed Graphs

Introduction to: Even Cycles in Directed Graphs

We will use terminology and notation consistent with those defined in Appendix
B. Unless otherwise stated, we will use digraph to mean a finite, simple, directed
graph. First, we examine the similarities and differences of walks, trails, and
cycles in digraphs, discussing algorithms to detect them. Next, we investigate
conditions on the number of edges, connectivity, and/or vertex degrees of a
digraph which guarantee the presence of an even cycle. We then describe the
class of even digraphs and conclude the chapter with a summary and a few other
results on certain restricted versions of the Even Cycle Problem.

Walks, Trails, and Cycles

For an arbitrary digraph G, consider the following questions:

(1e) Does G contain an even closed walk?
(2e) Does G contain an even closed trail?
(3e) Does G contain an even cycle?

By replacing the word “even” with “odd,” we obtain similar questions
(1o), (2o), and (3o). We will also explore localized versions of each, obtained by
specifying a vertex v of G and asking (for example):

(1o-loc) Does G have an odd closed walk passing through
the vertex v?

The difficulty of detecting even cycles in digraphs apparently was
observed first by D.H. Younger. [Younger, 1973] It is still not known whether an
efficient algorithm exists for this problem, or whether it is NP-complete. The
same is true for the corresponding problem for even closed trails (2e), and in fact,
these two problems are equivalent. First let us prove:
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Theorem (Klee, Ladner, and Manber, 1984): (1o), (2o), and (3o) all admit
polynomial-time solutions.

Proof:  Klee, et al. describe an efficient algorithm which solves these and (1e) by
solving (1e-loc) and (1o-loc). First we demonstrate the equivalence of (1o), (2o)
and (3o) by observing that a digraph has an odd cycle if and only if it has an odd
closed walk.

One direction is clear: Every cycle is a closed walk. On the other hand, if
W is an odd closed walk x0 x1 … xk  (xk = x0 and k is odd), and if W is not already
an odd cycle, then there are two vertices repeated in this sequence. Choose i as
large as possible subject to the condition that xi = xj for some i < j ≤ k. There is a
unique such i and j, and now xi xi+1 ... xj-1 xj is a cycle. If it is an odd cycle, we are
done. If not, then j-i is even and the sequence x0 x1 … xi-1 xi xj xj+1 … xk formed by
removing the cycle is a shorter odd closed walk. Repeated application of this
procedure eventually produces an odd cycle because the digraph is finite. Notice
that this proof hinges on the fact that no odd integer can be represented as a sum
of two even integers. In contrast, an even integer may be written as a sum of two
odd integers, and so a digraph may contain an even closed walk but have no
even cycles — for example, the digraph formed by the one-point union of two
odd cycles.

Consequently, to solve any of (1o), (2o), and (3o) in polynomial time it
suffices to construct an efficient algorithm to determine whether a graph has an
odd closed walk. In fact, we will show the stronger result that (1e-loc) and (1o-
loc) admit polynomial-time solutions. However, the remaining localized versions
are all NP-complete.

In this algorithm, each edge enters the computation at most twice (once
for each label that can be “active” on the head vertex of the edge). Thus the
computational complexity for solving the localized problems (1o-loc) and (1e-loc)
is linear in the number of edges of the digraph (quadratic in the number of
vertices). Therefore, determining whether a digraph has an odd cycle (3o) can be
solved by an algorithm with time complexity cubic in the number of vertices.

The algorithm is as follows: We are given a digraph G and a vertex v, and
ask whether there is an odd (or even) cycle passing through v. Starting at v,
breadth-first search through the digraph, keeping track of the parities of lengths
of walks discovered. Begin by applying the label 0 to vertex v. Apply the label 1
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to the vertex w to indicate the discovery of an odd walk from v to w; similarly,
label w with 0 when there is an even walk from v to w. Labels are never
removed, and a vertex may have both labels. When attaching a new label to a
vertex, the label remains active until the vertex has been “scanned.” Scanning a
vertex x consists of inspecting each neighbor y of x to determine whether the
recent addition of a new label to x justifies the attachment of a new label to y. The
list of all vertices with active labels is kept in a queue Q, which is empty at the
beginning of our computation and at the end. When the algorithm terminates,
each vertex w carries a label if and only if there is a walk of that parity starting at
v and ending at w.

Figure 1 gives the algorithm in pseudo-code. It consists of two functions,
the main program and a subsidiary function for applying labels to vertices.
Denote the set of all [active] labels of the vertex x by L(x) [A(x)]. The queue Q
contains all vertices with active labels, and there are functions add_to_Q(x) and
remove_from_Q() which add x to the rear of Q or remove and return the front
element of Q, respectively. The functions add_element(element, set) and
is_element(element, set) add the element to the set, or return 1 [0] if the element
is [not] a member of the set, respectively. Each label is treated as a boolean value
(0 or 1), and !s denotes the logical complement of s (read “not s”).

We assume that we are given the source vertex v and the digraph in a
manner such that the neighbors of a vertex can be computed efficiently. Table I
lists the contents of the queue as the algorithm is run on the sample digraph in
figure 2. Each vertex is followed by its currently active labels.
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# subsidiary function to add labels to vertices
label(x, y, s) {

if(is_element(!s, A(x)) and !is_element(s, L(x))) {
add_element(s, A(y));
add_element(s, L(y));
if(!is_element(y, Q)) {

add_to_Q(y);
}

}
}

# main algorithm
main() {

for each neighbor y of v {
add_element(1, A(y));
add_element(1, L(y));
add_to_Q(y);

}
while Q is nonempty {

x = remove_from_Q();
for each neighbor y of x {

label(x, y, 0);
label(x, y, 1);
A(x) = empty set;

}
}
if(is_element(0, L(v))) {

print “Vertex v lies on an even closed walk”;
}
if(is_element(1, L(v))) {

print “Vertex v lies on an odd closed walk”;
}

}

Figure 1: An efficient algorithm for solving (1e-loc) and (1o-loc).
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Table I: Active labels of vertices in the queue in a sample run.

Step    Vertices in queue (with active labels)

0 empty
1 1 (1) 2 (1) 3 (1)
2 2 (1) 3 (1) 4 (0) 5 (0)
3 3 (1) 4 (0) 5 (0) 1 (0)
4 4 (0) 5 (0) 1 (0)
5 5 (0) 1 (0) v (1)
6 1 (0) v (1)
7 v (1) 4 (1) 5 (1)
8 4 (1) 5 (1) 2 (0) 3 (0)
9 5 (1) 2 (0) 3 (0) v (0)
10 2 (0) 3 (0) v (0)
11 3 (0) v (0)
12 v (0)
13 empty

1

2

3 4

5

V

Figure 2: An example digraph with source vertex v.
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As already mentioned, the remaining localized problems are all NP-

complete. This situation is in stark contrast to the analogous questions for
undirected graphs, all of which (local and global) admit polynomial-time
solutions! [La Paugh and Papadimitriou, 1984] For digraphs, the computational
complexity of (2e) and (3e) remains unknown, but these two problems are
equivalent:

Theorem (Klee, Ladner, and Manber, 1984): Even cycles can be detected
efficiently if and only if even closed trails can.

Proof: We describe a polynomial-time algorithm A which takes a digraph G and
constructs another digraph H which has an even closed trail if and only if G has
an even cycle. Similarly, we describe an algorithm B which constructs a digraph
with an even closed trail if and only if the original graph contains an even cycle.
These algorithms are illustrated in figure 3. Because each algorithm runs in
polynomial time, detecting even cycles in directed graphs is equivalent to
detecting even closed trails in directed graphs.

In algorithm A, each vertex of G is replaced by three vertices x0, x1 and x2,
and two edges (x0, x1) and (x1, x2). Each edge (x, y) of G is replaced by the edge
(x2, y0) in H. Clearly, each cycle of length k in G is transformed into a cycle of
length 3k in H. When k is even, this cycle is an even closed trail in H
corresponding to the even cycle in G.

On the other hand, suppose T is a closed trail in H. The successive edges
of T form a sequence of pairwise edge-disjoint paths of length three. The first two
edges of each such path arise from a vertex of G, and the third edge from an edge
of G. We claim that no vertex of T is ever repeated, and hence T is actually an
even cycle. Consider three successive edges (x0, x1),     (x1, x2), (x2, y0) in T,
corresponding to an edge (x, y) of G. Now, x2 is not repeated in T because (x1, x2)
is the only edge of H into x2, and no edge of T is repeated (T is a trail, by
assumption). Similarly, x1 is not repeated. But then the vertex x0 cannot be
repeated either, because (x0, x1) is the only edge issuing from x0. Thus, each
closed trail T in H is, in fact, a cycle of length 3k, and arises from a cycle of length
k in G. Because k and 3k have the same parity, we have constructed the desired
algorithm A.
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Algorithm B produces the edge graph of G: For each edge (x, y) of G, there

is a vertex xy in its edge graph, and (uv, xy) is an edge in the edge graph of G
only when v = x. Each closed trail of length k in G involves k distinct,
successively adjacent edges, thus leading to a cycle of length k in its edge graph.
Conversely, each cycle of length k in the edge graph of G is a sequence of k
distinct, adjacent vertices, and hence must come from a sequence of k distinct,
successively adjacent edges in G (that is, a closed trail of length k in G).

A: y

x

z

w

B:
xy yz

y

z

x

w0

y0

x0

z0

y1
y2

x1

x2

w1

w2

z1

z2

Figure 3: Algorithms demonstrating the equivalence of detecting even cycles and
even closed trails in directed graphs.

Connectivity Results
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Although the complexity of finding even closed trails and even cycles

remains unknown, there are many results of interest which provide easily
checked conditions for a digraph to have an even cycle or an even closed trail.
Intuitively, one would expect that a large number of edges (with respect to the
number of vertices) would guarantee the existence of an even cycle. That this is
indeed the case was established by Chung, Goddard, and Kleitman in 1994:

Theorem: Every strongly connected directed graph with n vertices and at least
(n + 1)2/4 edges has an even cycle, and this bound is best possible in the sense
that there exist strong digraphs with fewer edges and no even cycles.

Of course, this theorem allows for the possibility that many edges are
clumped together. In order to obtain better bounds, we need to exlude these
cases by better distributing the edges among the vertices. One way to accomplish
this task is to place lower or upper bounds on the vertex degrees. For example,

Theorem (Koh, 1976): If each vertex of a digraph G has outdegree at least two,
then G contains two edge-disjoint cycles with at least one common vertex. Hence
G contains an even closed trail.

Proof:  If each vertex of a digraph has outdegree at least one, then the digraph
has a cycle. To produce one, start from any edge (x0, x1) and continue to add
edges (xk, xk+1) until some vertex is repeated in the sequence x0, …, xk+1. Such
edges exist because each vertex has outdegree at least one; until we repeat a
vertex, there is always at least one outgoing edge. The graph is finite, so
eventually some vertex must be repeated, and then we have found a cycle of the
digraph.

Now if every vertex of G has outdegree at least two, start with some cycle
C1, and let G1 denote the sugraph of G formed by removing all the edges of C1.
Each vertex of G1 has outdegree at least 1, so G1 also has some cycle, C2. Now let
G2 be the sugraph of G1 formed by removing the edges of C2. If C2 is vertex-
disjoint from C1, then every vertex of G2 also has outdegree at least 1, and we can
continue this process. Eventually we obtain two cycles with at least one vertex in
common, but with no edges in common.
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Given any two such cycles, if either is even then it is an even cycle, and

thus an even closed trail. Otherwise, produce an even closed trail by starting at a
vertex they have in common and then following first one cycle and then the
other.

However, the analogous result for even cycles is not true. In fact, there
exist digraphs with arbitrarily large in- and outdegrees, yet no even cycles:

Theorem (Thomassen, 1985): For each positive integer n there are digraphs Dn
and Gn having no even cycles, even though

(i) Dn is strong and each vertex of Dn has outdegree n
(ii) each vertex of Gn has indegree n and outdegree at least n

Proof: Let D1 be an odd cycle, and create Dn from Dn-1 by induction as follows:
For each vertex v in Dn-1 add a set Yv of n vertices and one more additional
vertex v’. Add the edge (v, v’) and for each y in Yv add the edges (v’, y) and (y,
v). Also, for each neighbor z of v in Dn-1 and for each member y of Yv, add the
edge (y, z). Then Dn is strongly connected by construction, and each vertex of Dn
has outdegree exactly n. Every cycle in Dn corresponds to a cycle of the same
parity in Dn-1, so Dn has no even cycles (because Dn-1 doesn’t by the induction
hypothesis).

Now form the digraph En by reversing all edges of Dn, so each vertex of En
has indegree exactly n. Form Gn by taking vertex-disjoint copies of En and Dn
and adding all the edges (e, d) for each vertex e in En and d in Dn. Thus, each
vertex of Gn has outdegree and indegree at least n. Gn has no even cycles because
any cycle must lie entirely in one of its strong components, En and Dn, but
neither of these has any even cycles.

Any cycle of a digraph lies in one of its strongly connected components,
and efficient algorithms exist for finding these components. [Tarjan, 1972]
Therefore, we lose nothing if we restrict our attention to strongly connected
digraphs. In fact, Thomassen asked whether the properties of Dn and En in this
theorem can be combined into a single graph: Does there exist a positive integer
n such that every strongly connected digraph with indegree and outdegree at
least n has an even cycle? Partial answers to this question exist. For example,
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every d-regular digraph, d≥7, has an even cycle. [Friedland, 1989]  Except when
d=7, this theorem is subsumed by a result proved in an entirely different
manner:

Theorem (Alon/Linial, 1989): If G is a digraph with minimum outdegree at least
d and maximum outdegree at most D, and if the inequality                  e(Dd + 1) (1
- 1/k)d < 1 holds, then G has a cycle whose length is divisible by k. In particular,
if e(dD + 1) < 2d, then G has an even cycle.

Recently, Thomassen improved this bound still further:

Theorem (Thomassen, 1992): Every d-regular digraph, d≥3, has an even cycle. As
a (nontrivial) consequence, every 3-connected digraph has an even cycle.

However, this is the best possible in the sense that there exists a 2-regular,
2-connected digraph with no even cycles. [Koh, 1976; also Boyd, cited in
Thomassen, 1986] This digraph, pictured in figure 4, is neatly described as the
union of two 7-cycles 0123456 and 0362514. A computer search has shown that
every other 2-connected, 2-regular digraph with rotational symmetry and fifteen
or fewer vertices has an even cycle. [McKay, 1989, cited in Thomassen, 1993]

Figure 4: The only known 2-connected digraph with no even cycles.



Even Digraphs

Many results, including the proof of Thomassen’s theorem for 3-connected
digraphs, rely on another class of digraphs. A digraph is even if, whenever each
of its edges is assigned a weight 0 or 1, the digraph has a cycle of even weight.
[Vazirani and Yannakakis, 1989] Equivalently, every subdivision of the digraph
has an even cycle. In fact, there is the following characterization of even
digraphs, in terms of a class of “forbidden” subgraphs:

Theorem (Thomassen, 1992): A digraph G is even if and only if G has a weak
odd double-cycle. (A weak odd double-cycle is any digraph obtainable from an
odd dicycle by splitting vertices or subdividing edges.)

The recognition problem for even digraphs is equivalent to the Even Cycle
Problem. [Seymour/Thomassen, 1987] As with even cycles, there are many
theorems asserting that digraphs with certain connectivity or vertex degrees are
even. One such theorem is that every strongly connected digraph with minimum
in- and outdegrees at least three is even. In contrast to the situation for even
cycles, it is known that there are infinitely many 2-connected digraphs which are
not even. [Thomassen, 1992]

Restricted Versions

Other restricted versions of the Even Cycle Problem admit polynomial
time solutions. For example, Thomassen describes an efficient algorithm for
determining whether a planar digraph has an even cycle. [Thomassen, 1993]
Galluccio and Loebl found a different polynomial-time algorithm for planar
graphs. [Galluccio and Loebl, 1994]. They recently extended their algorithm in
several ways, coming tantalizingly close to solving the Even Cycle Problem in its
full generality.

First, they described a polynomial-time algorithm for detecting even
cycles in digraphs which are K3,3 or K5 free. [Galluccio and Loebl, 1995] (An
undirected graph is H-free when it does not contain a subgraph contractible to
H. A digraph is H-free when its underlying undirected graph is H-free.) Their
algorithm actually extends to detecting cycles of any modularity in a directed
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graph, similar in spirit to the theorem due to Alon and Linial previously
mentioned.

They followed up with a proof that, given a fixed but arbitrary surface,
one can determine in polynomial time whether a digraph embeddable on that
surface has an even cycle. [Galluccio and Loebl, 1996] Thus this result includes
the previous one for planar digraphs, and constitutes a significant step toward
detecting even cycles in arbitrary digraphs.

Conclusion

The complexity of the Even Cycle Problem remains unknown, although
many similar problems for directed graphs admit polynomial-time solutions. By
placing bounds — either on the number of edges in the digraph, or the number
of edges entering or leaving each vertex, or the number of paths between any
two vertices, or some combination of these — we can guarantee the existence of
an even cycle. When these conditions are easily checked, we thus have an
efficient algorithm for solving the Even Cycle Problem in these cases. Finally, we
remark that algorithms for determining whether a digraph has an even cycle
exist, and although not efficient, such algorithms do have advantages for our
purposes over those that find every cycle in the digraph. [Karmarkar, 1984]



Chapter 2: L-Matrices and Sign-solvability

Introduction to: L-Matrices and Sign-solvability

Certain qualitative problems (including classic supply and demand scenarios in
economics; for examples see Samuelson, 1947) lead naturally to questions of sign-
solvability, in which one considers only whether the values of the variables in a
linear system are positive, negative, or zero. First, we will define sign-solvable
linear systems;  then we introduce L- and S-matrices, which play important roles
in studying sign-solvability. We continue with a foray into the complexity of the
recognition problem for sign-solvability, and conclude this chapter with a proof
of the equivalence of the square L-Matrix Problem and the Even Cycle Problem.

Sign-solvability

Sign-solvable systems were first studied in 1962 by the economist Lancaster
(inspired in part by Samuelson’s book). Basset, Maybee, and Quirk (1968)
demonstrated that sign-solvability translates into certain properties of directed
graphs. Building upon their work, Klee, Ladner, and Manber (1984) were the first
to study in depth the relations between the even cycle problem and the
recognition problem for sign-solvable systems. Their paper established several
fundamental computational complexity results and spurred widespread interest
in these problems. Key to their study of sign-solvable systems are matrices
known as L- and S- matrices (for “linearly independent” and “simplex,”
respectively).

Definition: Two matrices A, B have the same sign pattern when they are of the
same size and corresponding entries in the same row and column have the same
sign. In this case we write sgn(A) = sgn(B), and write Q(A) for the qualitative
class of matrices, all of which have the same sign pattern as the matrix A.

We can also speak of qualitative classes of vectors (thought of as nx1 matrices),
and then we have:
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Definition: The linear system Ax = b is sign-solvable when

(1) For every matrix C in Q(A) and every vector d in Q(b), the
system Cy = d is solvable,

and
(2) every solution vector y is in the same qualitative class, which we
write Q(Ax = b).

Although it is not immediately clear from the definition, every vector in
Q(Ax = b) is a solution to some system satisfying the first condition. (Composing
the matrix with any nonnegative, invertible diagonal matrix does not change its
qualitative class, and hence every solution vector can be achieved.) Moreover,
sign-solvable systems do exist; one example is depicted in figure 5. Every matrix
A with the same sign pattern as the matrix on the left, and every vector b with
the same sign pattern as the vector on the right give rise to a linear system Ax = b
with a solution vector x whose sign pattern is (+, +)T.

+ – x1 0
– – x2 –

=( ) )( ( )
Figure 5: A sign-solvable system.

When the solution vectors in Q(Ax = b) have no zero coordinates, we say
the system is strongly sign-solvable. [Klee, 1987] Throughout our discussion, we
will assume the coefficient matrices have no rows which are entirely zero, since
the addition or removal of such rows does not change whether a matrix is an L-
or S-matrix, and all-zero rows only make the statements of results more
complicated.



L-matrices

L-matrices arise naturally from sign-solvable homogenous systems in the
following way: Because 0 is a solution vector to Ax = 0 and is the only vector
with its sign pattern, the system Ax = 0 is sign-solvable if and only if Q(Ax = 0)
consists only of the vector 0. But Q(Ax = 0) = {0} if and only if every matrix in
Q(A) has linearly independent columns, motivating the following definition:

Definition: A is an L-matrix if every matrix in Q(A) has linearly independent
columns.

Some authors define an L-matrix as one having linearly independent
rows, a definition equivalent to ours via transposition.

( )+   +   –   +
+   –   +   +

+   +   +   –

Figure 6: A 3 x 4 L-matrix.

As we will soon explain, square L-matrices are of particular interest
because of their connections to even cycles in directed graphs. From the
definition, it follows that every square L-matrix (also called a sign-nonsingular
matrix) is invertible, and hence has nonzero determinant. The sign of the
determinant of every matrix in the qualitative class of an L-matrix must be the
same, or else there would exist some matrix in the class with determinant zero,
hence singular. Therefore, square L-matrices are precisely those matrices with
signed determinant.

For example, the lower Hessenberg nxn matrices — with positive ones on
the super-diagonal, negative ones on and below the main diagonal, and zeros
everywhere else — are square L-matrices with signed determinant (-1)n.

Because every square L-matrix has some nonzero term in its determinant
expansion, each row and column has at least one nonzero entry. Consequently,
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there is a permutation of the columns and rows such that these nonzero terms
are on the diagonal. Permuting rows and columns preserves the property of
being an L-matrix, so without loss of generality we may assume every L-matrix
has only nonzero diagonal entries.

Moreover, if we simultaneously multiply by -1 any row of the matrix A
and the corresponding entry in b for the sign-solvable system Ax = b, we obtain a
new sign-solvable system such that every diagonal element of the matrix has the
same sign. We will use this “standard form” of an L-matrix in the next chapter to
establish the equivalence of the Even Cycle Problem and the square L-Matrix
Problem.

S-matrices

Proceeding to sign-solvable inhomogeneous systems Ax=b for some nonzero b,
we first observe that A must be an L-matrix: If not, then there would be a
nonzero vector y in the null space of A so that the equation A (x + cy) = Ax + 0 =
b holds for all real numbers c. However, x+cy is not in Q(x) for all values of c,
contradicting sign-solvability.

Now suppose [A –b] z = 0 is sign-solvable, where [A –b] is the augmented
matrix obtained by appending the column vector b to the matrix A. Because A is
an L-matrix, if the last coordinate of z is zero then all of z is. Otherwise, Az’ = cb,
where z’ is the shortened vector obtained by removing the last coordinate of z.
Call this coordinate c, and observe cz’ is in Q(Ax = b). We are concerned only
with the signs of these vectors, so we conclude that Ax = b is sign-solvable if and
only if the null space of [C –d] for every C in Q(A) and d in Q(b) is a line through
the origin.

When A is a square nxn matrix, the augmented matrix [A –b] has
dimensions nx(n+1). Solutions to the system can be found by applying Cramer’s
Rule, computing determinants of each of the submatrices obtained by deleting a
column in the augmented matrix. Some routine but tedious calculations show
that the system is strongly sign-solvable if and only if A is an L-matrix and every
one of these submatrices is an L-matrix. This discovery motivates the following
definition:
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Definition: Let A be an nx(n+1) matrix. A is an S*-matrix if and only if the null
space of each matrix in Q(A) is a line through the origin and an open orthant in
Rn, the same orthant for all matrices in Q(A).

Equivalently, we could say that A is an S*-matrix if and only if there exists
a vector z such that the Q(Ax = 0) is the union of Q(-z), Q(z), and the zero vector.
Every S*-matrix and every submatrix obtained by deleting a column of an S*-
matrix is an L-matrix. The inhomogeneous linear system Ax = b is strongly sign-
solvable if and only if the matrix [A –b] is an S*-matrix.

When the null space is a line passing through the open positive orthant in
particular (that is, every vector in the null space has all its entries the same sign),
the matrix is called an S-matrix. Thus, S-matrices are a special type of S*-matrix,
and every S*-matrix can be converted into an S-matrix by replacing some of its
columns with their negatives. We can think of S-matrices as a “normal form” for
S*-matrices. As with square L-matrices, there are several equivalent conditions
for an nx(n+1) matrix to be an S-matrix. For example, a matrix is an S-matrix if
and only if its columns form the vertices of an n-simplex with the origin in its
(relative) interior (inspiring the “S” in S-matrix). [Klee and Ladner, 1981]

Although we will consider these matrices primarily in terms of their
relevance to the Even Cycle Problem, sign-solvable systems, L-, and S-matrices
form an area of study in their own right. The interested reader can find
additional details in the recent book by Brualdi and Shader (1995). However, we
mention a few additional facts before continuing with our investigation of the
recognition problem for L- and S-matrices.

If Ax = b is sign-solvable, then so is Ax = c, where c is formed from b by
possibly replacing some of its nonzero entries with 0. As already noted, the
addition or deletion of all zero rows does not alter whether a matrix is an L- or S-
matrix. Many results focus on the placement of zeros in these matrices, in part
because their structure turns out to be quite sensitive to them — after all, 0 is a
point of discontinuity in passing from the positive sign cone to the negative one.
For example, the fact that every S*-matrix has at least one row with precisely two
nonzero entries is used to establish their recursive structure and show that every
nx(n+1) S*-matrix has at least 2n and no more than n(n+3)/2 nonzero entries
(both bounds are sharp). [Klee, 1987]



Recognition

Now that we have been introduced to the major players in this arena, let us
prove that recognizing sign-solvability is equivalent to recognizing L- and S-
matrices. Standard notation is to write A[a, b] for the submatrix of A with rows
indexed by the set of indices a and columns indexed by b. We will also write A(a,
b) for A[a’, b’] (where a’ denotes the complement of the set a).

Theorem (Manber, 1982): Let A be an mxn matrix, b an mx1 column vector, and
suppose x is a solution of Ax = b. Define the index sets

j = {k : xk ≠ 0} and i = {k : akl ≠ 0 for some l in j}

Then Ax = b is sign-solvable if and only if
(1) the matrix ( A[i, j]  –b[i, {1}] ) formed by appending a subvector of

–b to a submatrix of A is an S*-matrix,
and (2) A(i, j) is an L-matrix. (Every 0xk matrix is vacuously an L-matrix).

Proof (adapted from Brualdi and Shader, 1995):
Without loss of generality, suppose i is the set of indices from 0 to r

inclusive, and j is the set from 0 to s. Note that if s is zero then r is also. By the
definitions of i and j, A can be written in block form as

(A1    A3

  0     A2 )
where A1 is an rxs matrix with no zero rows. Let b’ = (b1 b2 … br)T. Then the
linear system Ax = b is equivalent to the simultaneous equations

A1 y +A3 z = b’
A2 z = 0

and it is necessary to show that Ax = b is sign-solvable if and only if the matrix
[A1 -b’] is an S*-matrix, and that A2 is an L-matrix.
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First, suppose Ax = b is sign-solvable, so A is an L-matrix. Then every

vector (y z)T in Q(Ax = b) must have z=0. Then the first equation is just A1 y = b’
and is sign-solvable, so A1 is also an L-matrix. Because the columns of A1 are
linearly independent, the number r of columns of A1 must exceed the number s
of rows. In fact, if r were strictly greater than s, then because the set of linearly
independent rows of A1 has cardinality at most s, we could find a matrix in
Q(A1) which agrees with A1 in these independent rows but when multiplied by y
does not yield a vector in the qualitative class of b’ (which has r rows), thus
contradicting the sign-solvability of A1 y = b’. So r = s, and consequently [A1  –b’]
is an S*-matrix. As already noted, z = 0 for every vector in Q(Ax = b). To show A2

is an L-matrix, it remains to show that there is a solution to C u = 0 for every
matrix C in Q(A2). But the fact that A1 is a square matrix implies that the
equation A1 y = b’ – A3 u always has a solution. Therefore, A2 is an L-matrix.

Conversely, suppose [A1  –b’] is an S*-matrix, and A2 is an L-matrix. Then
the equations above have a unique solution for each choice of matrices and
vectors in the same qualitative classes as A1, A2, A3, and b’, and thus for each C
in Q(A) and d in Q(b) there is a solution w in Q(Ax = b) to Cw = d. Therefore, Ax
= b is sign-solvable.

We conclude that to determine whether a linear system is sign-solvable, it
is necessary to examine only these two matrices (formed in polynomial time from
the elements of this system) and determine whether or not one is an S*-matrix
and the other an L-matrix.

Unfortunately (for economists, at least!), the recognition problem for
rectangular L-matrices is NP-complete, even in the “almost square” case. [Klee,
Ladner, and Manber, 1984] The proof is too long for inclusion here, but involves
transforming L-matrices to a satisfiability problem in propositional logic. In
contrast, S-matrices can be recognized in polynomial time (in fact, there is a
recursive algorithm for constructing them). [Klee, 1987] The complexity of
recognizing square L-matrices (the square L-Matrix Problem) remains unknown,
but next we will prove it is equivalent to the Even Cycle Problem.

Cycles in Matrices
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At first, sign-solvable systems and the L- and S- matrices may appear to have
nothing in common with the problem of finding even cycles in directed graphs
discussed in the previous chapter. Let us now establish a connection between
them.

Recall that square L-matrices are precisely those matrices with signed
determinant, and that every square L-matrix can be put into a “standard form”
with all its diagonal elements negative. Now, the determinant of any matrix can
be written as a sum of cycles ai1 i2 ai2 i3 … ai3 in ain i1 . Define the sign of a cycle to
be the product of the signs of its elements, and observe that when the
determinant is nonzero, some cycle must be nonzero. The matrix has nonzero
signed determinant if and only if some cycle has nonzero sign and no two cycles
have opposite sign. For an L-matrix in standard form, the cycle consisting of
diagonal elements is nonzero, so every cycle in an L-matrix must have
nonpositive sign.

In addition, Bassett, Maybee, and Quirk (1968) proved that

Theorem: The system Ax = b is sign-solvable if and only if both
(1) Every cycle in A is nonpositive, and
(2) whenever bj >0, every chain ai1 i2 ai2 i3 … ai(n-1) j is nonnegative.

In particular, because Ax = 0 is sign-solvable if and only if A is an L-
matrix, we conclude that A is an L-matrix if and only if A has no positive cycles.

Signed Digraphs

The term “cycle” is highly suggestive, and aptly chosen. Given any nxn square
matrix, we can construct a digraph D(A) with adjacency matrix A by taking the
vertices 1 through n and adding an edge (i, j) whenever the matrix element   ai j is
nonzero. Cycles in the matrix correspond to cycles in the digraph, and conversely
so. We can make a signed digraph by also labelling each edge with the sign of
the corresponding entry ai j. Define the sign of a cycle in a signed digraph to be
the product of the signs of the labels of the cycle. Every cycle in the matrix A is
nonpositive if and only if every cycle in the signed digraph D(A) is negative.

Now that we know square L-matrices are precisely those with nonpositive
cycles, signed digraphs provide a convenient graph-theoretical tool for
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characterizing square L-matrices. However, an L-matrix in standard form has
nonzero diagonal entries, and hence the digraph formed from it will have loops
at each vertex. We want to work with simple digraphs, so remove these loops
from the digraph. This is equivalent to working with the matrix B+I and the
digraph D(B+I), where B is a matrix in Q(A) with all its entries –1, 0, or +1. (In
fact, because we can always choose such a representative from the qualitative
class of a matrix, the problem of recognizing L- and S-matrices is purely
combinatorial in nature.) To avoid difficult wordings of the results presented in
this chapter, we will henceforth write D(A) for this digraph, instead of the
digraph with loops.

Now, apply our characterization of L-matrices A in terms of their cycles to
the matrices –A with positive main diagonal. Then A is an L-matrix if and only if
the sign of each cycle of length k is (–1)k. Therefore,

Theorem: Let A be a square {–1, 0, +1} matrix with positive diagonal. Then A is
an L-matrix if and only if the digraph D(A) has no even cycles.

This theorem establishes the firm connection between recognizing square
L-matrices (the square L-Matrix Problem) and determining whether a directed
graph has an even cycle (the Even Cycle Problem).

Conclusion

Graph theoretic problems are often easier to work with than matrix
problems in terms of computational complexity. Thus, one significance of this
theorem is that it provides a mechanism for establishing the computational
complexity of certain matrix-theoretic problems by using graph-theoretic tools,
thereby extending the reach of computational complexity. Another is that, as we
have seen, many problems in proximity to the Even Cycle Problem for digraphs
or the L-matrix Problem for square matrices admit efficient solutions, while
many others do not. We conclude that these two (equivalent) problems are in
some sense near the “boundary” of NP-completeness. This proximity to
problems of widely differing complexity could have consequences for
determining whether NP = P, and is an interesting phenomenon in its own right.





Chapter 3: Beyond

Introduction to: Beyond

The Even Cycle Problem leads to many other avenues of research, on such varied
topics as labelled digraphs, Pfaffian orientations, permanents, polytopes and
more. In this chapter, we briefly explore some of these generalizations and side
streets, and conclude our tour with proposed topics for future research.

Balanced Labellings

A balanced labelling of a digraph is an assignment from {-1, 0, +1} to its vertices
(one label per vertex) such that not all labels are 0, and every vertex labelled ±1
has at least one neighbor of opposite sign. Let us now prove a digraph has a
balanced labelling if and only if it has an even cycle. Unfortunately, there are too
many possible labellings to be checked for this result to lead to an efficient
algorithm for detecting even cycles.

Theorem (Klee, n. d.): Given a digraph G, the following are equivalent:
(i) G has an even cycle
(ii) G admits a balanced labelling
(iii) G admits a balanced labelling in which the neighbors of every

vertex labelled 0 are also labelled 0.

Proof: Given a balanced labelling, one can find an even cycle by starting with a
nonzero label and following edges which alternate sign from one vertex to the
next, until some vertex is repeated. The portion of the walk between the two
appearances of the repeated vertex is an even cycle.

Conversely, given an even cycle, label its vertices alternatingly +1, -1 and
then extend to a balanced labelling for the entire digraph as follows: While there
is an edge (x, y) such that x is not yet labelled and y has a nonzero label, label x
oppositely from y. When there are no more such edges (x, y), attach the label 0 to
all remaining unlabelled nodes.  The extended labelling is balanced (by
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construction), and has the additional property that if a vertex is lablled 0, then so
are all of its neighbors. Thus the three properties in the theorem are equivalent.

Distinguished Vertices

A vertex in a signed digraph is distinguished if every path ending at that vertex
uses only positive edges. Any strong component of the graph which contains a
distinguised vertex is also said to be distinguished. Manber proved several
results concerning distinguished vertices.  [Manber, 1982] For example, when the
digraph is formed from an L-matrix, each distinguished component contains
only one distinguished vertex and there are no paths starting in an
undistinguished component and ending in a distinguished one. Armed with the
concept of distinguished vertices and given any L-matrix A, one can find a vector
b such that Ax = b is sign-solvable by choosing bi ≥ 0 if i is distinguished, and bi

= 0 otherwise.

Permanents

A formula for the permanent of a square matrix is deceptively similar to the
well-known alternating sum for the determinant — simply remove the
alternating sign from each term in the sum. However, this “minor” difference
greatly increases the difficulty of computing the permanent. In fact, computing
the permanent of a matrix is NP-hard, even for 0-1 matrices. [Valiant, 1979]

Because the formula for the permanent is superficially so similar to the
determinant, many have sought an expression for one in terms of the other.
Polya suggested that perhaps the permanent could be found by computing the
determinant of another matrix obtained from the original by reversing the sign of
some (possibly none) of its entries. [Polya, 1913] However, he also noted that this
is not always possible.

In 1989, Vazirani and Yannakakis showed that determining whether the
determinant and permanent of a matrix are equal is NP-hard. However, when
we restrict the instances to only 0-1 matrices or matrices with nonnegative
entries, they showed this problem is equivalent to the Even Cycle Problem. If we
say that Polya’s scheme, when applied to a 0-1 matrix A, is to change some +1
entries to -1, then Vazirani and Yannakakis also showed that determining



27
whether or not Polya’s scheme can be applied to a square 0-1 matrix A to
produce a matrix B such that det(B) = perm(A) is equivalent to the Even Cycle
Problem.

Pfaffian Orientations

A [perfect] matching is a subset of the edges of a graph such that every vertex of
the graph is incident to at most [exactly] one edge in the matching. In 1967,
Kasteleyn described a polynomial time algorithm for computing the number of
perfect matchings of any planar, undirected graph. His proof relied heavily on
the idea of a Pfaffian orientation of the graph. Of course, any undirected graph
can be converted to a directed one by arbitrarily assigning directions to its edges.
To assign a Pfaffian orientation, first distinguish each cycle C in the graph G for
which C has even length and G\C has a perfect matching. A Pfaffian orientation
of G, if one exists, is an orientation such that when traversing each distinguished
cycle, an odd number of edges are oriented in the direction of the traversal.

One reason Pfaffian orientations are of interest is that given a graph G
with a Pfaffian orientation, if the matrix B is obtained from its adjacency matrix A
by replacing with -1 those entries corresponding to edges which are reversed in
the orientation (i.e., Polya’s scheme), then the determinant of B is the square of
the number of perfect matchings in G.

Every K3,3-free graph has a Pfaffian orientation that can be found in
polynomial time. [Little, 1974] On the other hand, deciding whether or not a
bipartite graph has a Pfaffian orientation is equivalent to the Even Cycle
Problem. [Vazirani and Yannakakis, 1989]

Interval Matrices

We can generalize sign-solvability by a modification of the qualitative class.
When the qualitative classes are viewed as collections of matrices whose entries
belong to one of three intervals, the two open intervals (-∞, 0) and     (0, ∞)
together with the degenerate interval {0}, a natural generalization of sign-
solvability (and other concepts related to sign patterns) is to consider interval
matrices, whose entries belong to certain intervals. That is, given a set of
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intervals or types of intervals, we define the “qualitative class” (with respect to
that set) to be those matrices whose entries lie in those [types of] intervals.

The usual type of interval matrix found in the literature is a restriction to
finite closed (or open) intervals. Then we can describe qualitative classes
succinctly as [A - B, A + B] := { M ∈ Rnxn | ai j - bi j ≤ mi j ≤ ai j + bi j} where A is the
matrix whose entries are the midpoints of each interval and B is a nonnegative
matrix determining the length of each interval (using strict inequalities when we
wish to consider open intervals). In general, the computational complexity of
recognizing whether every matrix in such a “qualitative class” is nonsingular is
NP-hard. [Poljak and Rohn, 1993]

Cone-Systems

We mentioned in passing that an equivalent definition of an nx(n+1) S-matrix is
that when its columns are treated as vertices in Rn, they determine an n-simplex
with the origin in its interior. Continuing in this direction, observe that the
columns of any matrix in the qualitative class Q(A) (for some matrix A) all lie in
convex cones. This  follows from the fact that for any vector x, Q(x) is a sign cone
of vectors with the same sign as x in each of its coordinates.

When viewed in this way, the recognition problem for S-matrices becomes
a question of determining whether the origin belongs to certain convex sets
derived from the sign-cones. Klee, von Hohenbalken and Lewis proved the more
general result that, given any mxn system (A1, A2, …, An) of finitely-presented
cones, there are polynomial time algorithms to recognize whether the origin is in
the vector sum of the cones and whether it is in their convex hull. As a
consequence, the recognition problem for S-matrices admits a polynomial-time
solution.

Their geometric approach is beautiful, and ties in with interval matrices as
well. Unfortunately, interval matrices have upper and lower bounds for each
entry, so each cone could require up to O(2m) generators. Sign-cones need only
O(m) generators, so their algorithm solves the recognition problem for sign-
cones in polynomial time, but not for general interval matrices. In general, the
complexities of algorithms for polytopes depend on the representations of the
polytopes — either as the convex hull of a set of vertices, or as the intersection of
half-spaces determined by linear inequalities. Interval matrices, for example, can
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be represented using O(m) linear inequalities. Perhaps their result can also be
proved for cones presented in this way.

Also, their algorithm is not as efficient as the O(m2) algorithm for
recognizing S-matrices [Klee, 1987], so other improvements may be possible.
What happens for matrices whose columns belong to more general polytopes
than just cones? What characterizations might these matrices have in terms of
digraphs? What connections do they have to sign-solvability, or more general
kinds of solvability?

Open Problems

Many of the generalizations mentioned in this chapter have not been fully
investigated. Klee (personal communication) has suggested examining, for
example, interval matrices using five types of intervals: (-∞, -1], (-1, 0), {0},     (0,
1), and [1, ∞). In general, what happens when we fix a set of intervals and then
define the qualitative classes using these intervals? When are all the matrices in
such a class solvable? Stable? Are there analogs of L- and S-matrices for these
classes?

Especially promising are the generalizations from sign-cones to polytopes.
How can the considerable machinery from the theory of polytopes be brought to
bear on this subject? Klee, von Hohenbalken, and Lewis (1993) successfully
employed results from linear programming to establish the computational
complexity of some of these systems, but this is only a beginning.

Even when we constrain ourselves to remain within the confines of the
original problems concerning L-matrices, sign-solvability, and even cycles in
directed graphs, there are many interesting unexplored avenues and unsolved
problems. (Of course, there is always the main one: Determine the complexity of
the Even Cycle Problem!) Many results for L-matrices and their ilk can be
translated into results for directed graphs, and vice-versa. [e.g., Brualdi and
Shader, chapter 6] What other results can be so translated? For example, what
implications do k-connectedness or planarity of a digraph have for its adjacency
matrix, and how do these implications affect our analysis of the square L-matrix
problem? Can an efficient algorithm for one restricted problem (such as the
polynomial-time algorithm for recognizing planar digraphs without even cycles)
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be transformed into efficient algorithms for the others (perhaps an efficient
algorithm for recognizing a certain subclass of L-matrices)?

It would be very surprising if the only 2-connected digraph with no even
cycles is the one given in the first chapter. Perhaps there is only a finite list of
such graphs; even if there are infinitely many, perhaps they can be described
succinctly enough to allow a polynomial-time algorithm to test whether a given
2-connected digraph is one of them. If nothing else, surely upper bounds on the
number of edges can be found, analogous to the bound for (1-)connected
digraphs. [Chung, Goddard, and Kleitman, 1994]

Conclusion

The Even Cycle Mystery remains unsolved. In the course of investigating this
thorny case, sleuths have discovered leads into many disparate areas of
mathematics, and proximity to problems of widely varying difficulty and
complexity. Although the case may never be completely solved, progress
continues to be made as many exciting answers are found, and even more
unanswered questions are raised.



Appendix A: Computational Complexity

Computational complexity is the study of algorithms. For an in-depth treatment
of computational complexity, we refer the reader to the definitive text by Garey
and Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness. Here we will provide just a shallow background and establish the
terminology used in this paper.

Computational complexity has only a little to do with computers, and a
great deal to do with decision problems and algorithms. A decision problem
consists of a collection of instances, and a yes/no (or true/false) question
regarding these instances. A typical decision problem is:

Instance: A finite, simple, undirected graph G.
Question: Does G have a Hamiltonian cycle?

The size of this problem might be regarded as the number of edges of the graph,
or the number of vertices, or possibly the sum of these.

An algorithm is a process for answering the question, given any one of the
instances. That is, the same algorithm should correctly solve the question for any
of the possible instances. We say an algorithm is efficient or polynomial-time
(sometimes shortened to polytime) if it runs in polynomial time with respect to
the size of the instance. This characterization is mathematically useful because
combinations of efficient algorithms are still efficient. It is also practically useful
when the coefficients and exponents of the polynomial are not too large, because
such algorithms will fairly quickly produce an answer (or prove that none
exists).

There are two aspects to solving any decision problem: Producing an
answer (solving the problem), and verifying an answer. Sometimes one of these
tasks may be significantly easier than the other. For example, it may be difficult
to find a Hamiltonian cycle in a graph, but once we are given a cycle it is
straightforward to verify whether or not it really is Hamiltonian. Decision
problems which can be solved with an efficient algorithm belong to the class P
(for polynomial time). Problems for which candidate solutions can be verified
with an efficient algorithm belong to the class N P (for nondeterministic
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polynomial time). “Nondeterministic” refers to the fact that although we may be
able to verify a “yes” answer to the question, verifying a “no” answer basically
involves solving the problem itself. Thus the algorithm cannot provide an
answer (i.e., is not deterministic), but can decide whether an answer works. So,
although every decision problem which can be solved in polynomial time can
also be verified in polynomial time, the converse may not be true. Said another
way, P is a subset of NP, but it is not known whether the two classes are equal.

Most researchers believe that P ≠ NP because of the inherent asymmetry
between verifying solutions and producing them. For example, verifying the
claim that a particular graph has no Hamiltonian cycle often appears to require
searching through every possibility unless the graph has some special property
(or properties) which guarantee or exclude the existence of a Hamiltonian cycle
(or otherwise simplify our search), and we can check in polynomial time whether
or not a graph has that property. Thus, verifying a negative answer is
tantamount to solving the problem in the first place (exhaustive searches can take
a long time). In contrast, verifying whether a given set of edges really is a
Hamiltonian cycle in the graph is easy.

One important area of research involves determining whether a problem
is in P or NP. Proving a problem is in P is fairly straightforward: Either produce
a polynomial time algorithm for solving it, or else find a polynomial time
transformation of it into another problem which is already known to be in P.
Because adding and multiplying polynomials results in another polynomial,
such transformations do not destroy the polynomial time complexity of the
algorithm. When there are polynomial time transformations from each problem
to the other, we say the problems are (polynomial-time) equivalent to each
other.

Proving a problem is not in P is usually not as simple. After all, the
inability to find an efficient algorithm does not imply no such algorithm exists.
However, there is a third class of decision problems which play a very important
role in this paper, namely the class of NPC (NP-complete) problems. These
problems are in a sense “the hardest problems in NP,” because every problem in
NP can be transformed (in polynomial time) to one of them. More generally, a
problem which is at least as hard as every problem in NP (but not necessarily in
NP) is called NP-hard. Thus, the NP-complete problems are precisely those
problems which are both in NP and NP-hard.
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In order to show a problem is NP-complete, it suffices to find a

polynomial time transformation from an existing NP-complete problem to it. Of
course, this requires an NP-complete problem to begin with, and it is not trivial
to show that one exists. However, Cook (who introduced the notion of NP-
completeness) proved that the satisfiability problem of propositional logic is in
fact, NP-complete. Briefly, this problem concerns elements from logic:

• literals, which are Boolean variables or their negations
• clauses, which are disjunctions of literals (that is, a clause is true if and

only if at least one literal in it is true)
• formulas, which are conjunctions and disjunctions of clauses

We collectively refer to these elements as Boolean expressions. A Boolean
expression is satisfiable if there is an assignment of true and false values to its
variable(s) such that the expression is true.

A Boolean formula is in conjuctive normal form when it is purely a
conjunction of clauses (that is, the formula is true if and only if all of its clauses
are true). Then the satisfiability problem (SAT) is:

Instance: A Boolean formula in conjunctive normal form.
Question: Is it satisfiable?

A proof that SAT is NP-complete can be found in Garey and Johnson.
Since the introduction of NP-completeness, literally hundreds of problems

have been proven NP-complete by transforming known NP-complete problems
into them. But, for every problem whose computational complexity is
determined, it seems two (or more) problems whose computational complexity is
unknown are found.

The two problems with which this paper is mostly concerned are the Even
Cycle Problem for directed graphs (EVCY) and the square L-matrix problem
(LMAT). These two problems are equivalent, but their complexity remains
unknown.

Instance: A finite simple directed graph G.
Question: Does G have an even cycle?

Instance: A square real matrix A.
Question: Is A an L-matrix?





Appendix B: Directed Graph Theory

Abstractly, a graph is a set V of vertices (or nodes, or points) together with a set
E of edges (or arcs, or lines), where each element of E is an unordered pair (u, v)
of elements in V. The vertices u and v are the endpoints of the edge   (u, v).  A
directed graph (or digraph) is superficially similar to an undirected one; the only
change to the definition above is that now edges have a direction to them; each
element of the edge set E of a directed graph is an ordered pair of elements in V.
However, this small difference in their definitions produces large (and
sometimes surprising) differences in their structures.

Often, and in this paper in particular, we restrict V and E to be finite sets.
We also require the graphs to be simple, which means we disallow loops (edges
of the form (v, v) for some vertex v) and multiple edges from one vertex to
another.

For directed graphs we do not count edges (u, v) and (v, u) as multiple
edges because they have opposite directions. In fact, we say the edge (u, v) is
incident from u, and incident to v. Sometimes we then also say u dominates v.
The vertices incident to (respectively, from) v are called the in-neighbors
(respectively, out-neighbors) of v.  The indegree (resp., outdegree) of a vertex is
the number of its in-neighbors (resp., out-neighbors). When there is no
confusion, we may refer to the out-neighbors of v as simply its neighbors.

A subgraph [subdigraph for directed graphs] has as its vertex set some
subset of the vertex set of the original graph, and every edge in the subgraph is
an edge in the original. A maximal subgraph is a subgraph with the maximum
possible number of edges (every edge which is in the original and has both
endpoints in the vertex set of the subgraph).

The removal of a vertex from a graph results in the subgraph formed by
removing the vertex and all the edges incident to it. Removing an edge does not
remove any vertices. An edge (u, v) may be subdivided by adding one or more
new vertices w1, … wn to the vertex set, removing the edge (u, v), and in its place
adding the edges (u, w1), … (wn-1, wn), (wn, v).

We can also speak of longer sequences of vertices joined by edges. A
sequence x1 e1 x2 e2 … xn en xn+1 is called a walk (of length n) whenever all the xi
are vertices and each edge ei = (xi, xi+1) joins the two vertices immediately
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surrounding it in the sequence. For a simple graph, it is enough to list just the
vertex sequence, since the edges are then uniquely determined.

A trail is a walk in which no edge is repeated; a path is a walk in which no
vertex (and hence no edge) is repeated. A walk or trail is closed if the first and
last vertices are the same (xn+1 = x1).  A cycle of length n is a closed path   x1 e1 x2
… xn en x1, which we will sometimes write as (x1, x2, … xn) to emphasize that it is
a cycle and not merely a path. When we speak of the parity of any of these, we
mean the parity of the number of edges in the walk, trail, path or cycle in
question. A digraph with no cycles at all is acyclic.

Another useful concept in analyzing the structure of graphs is that of
connectedness. Loosely speaking, the more connected a graph is, the easier it is
to travel along edges in the graph from one vertex to another. A directed graph is
(strongly) connected (or just strong) if, for any two vertices x and y of the
digraph, there is a path from x to y, and a path from y to x. More generally, a
digraph is (strongly) k-connected if the removal of any k-1 or fewer vertices
results in a digraph which is still connected. If the underlying undirected graph
(formed by disregarding the orientation of each edge) is connected, then the
digraph is weakly connected (or just weak). We make no use of this concept in
this paper, but mention in passing that a digraph which is not even weakly
connected is said to be disconnected, and a weakly connected acyclic directed
graph is called a directed tree.

Strongly connected digraphs are of particular interest in directed graph
theory. Often it suffices to prove a theorem only for strong digraphs, and then
the other cases follow. Each maximal strongly connected subdigraph is called a
(strong) component of the digraph. It is not difficult to prove that every vertex of
a digraph lies in a unique strong component, and in fact these components can
be found in polynomial time.

Each graph has an adjacency matrix associated with it. The adjacency
matrix has rows and columns indexed by the vertex set of the graph. The element
of this matrix in row u, column v is 1 whenever (u, v) is an edge in the graph,
and 0 otherwise. Consequently, the adjacency matrix of an undirected graph is
symmetric, but this need not hold for directed graphs.

The adjacency matrix provides an alternative form for representing a
digraph from the usual vertex and edge sets. Because this representation can be
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obtained from the other in polynomial time, the two are equivalent from our
algorithmic point of view.

The relationships between digraphs and matrices are deep and complex.
For example, directed graph theory can be used to calculate the eigenvalues and
inverse (when it exists) of a square matrix, and is especially effective when the
associated digraph has few edges, which translates into the matrix being sparse
(i.e., the matrix has many zeros). [Harary, p. 205]

The relationship between directed graphs and L- and S-matrices is the
focus of chapter two. For an excellent introduction to undirected and directed
graph theory, the interested reader is directed (no pun intended) to Graph
Theory with Applications, by Bondy and Murty.





Appendix C: Relatives of the Even Cycle Problem

References are provided when possible, as well as the name used in the literature
to describe the problem. We first list those problems whose complexity is known,
and conclude the section with those problems which are equivalent to the Even
Cycle Problem, but whose complexity remains unknown. See Appendix A for
details on the meaning of “equivalent” and the format of the decision problems
presented here.

When convenient, several problems with similar wordings are grouped
together by putting the alternate wordings in square brackets. Unless explicitly
stated otherwise, all graphs and digraphs are finite and simple, and all matrices
are real.

Polynomial-Time (P) Problems

Odd Cycle [Walk, Trail]
Instance: A directed graph G.
Question: Does G have an odd cycle [walk, trail] ?
(Klee, Ladner, and Manber, 1984)

Local Odd [Even] Walk
Instance: A directed graph G and one of its vertices v.
Question: Does G have an odd [even] walk through v?
(Klee, Ladner, and Manber, 1984)

S[*]-Matrix
Instance: A matrix A.
Question: Is A an S[*]-Matrix?
(Klee, 1987)

Undirected Even [Odd] Cycle
Instance: An undirected graph G.
Question: Does G have an even [odd] cycle?
(LaPaugh and Papadimitriou, 1984)
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Planar Even Cycle

Instance: A planar, directed graph G.
Question: Does G have an even cycle?
(Thomassen, 1993; Galluccio and Loebl, 1994)

Even Cycle on Fixed Surface
Instance: An arbitrary fixed surface and any direceted graph G
embedded on that surface.
Question: Does G have an even cycle?
(Galluccio and Loebl, 1996)

Even Cycles in H-Free Graphs
Instance: A K3,3 -free or K5 -free directed graph G.
Question: Does G have an even cycle?
(Galluccio and Loebl, 1995)

Planar Perfect Matching
Instance: A planar, undirected graph G.
Question: Does G have a perfect matching?
(Kasteleyn, 1967)

NP-Complete (NPC) Problems

Local Odd [Even] Cycle (LOCODD[EV]CY)
Instance: A directed graph G and one of its vertices v.
Question: Does G have an odd [even] cycle through v?
(Klee, Ladner, and Manber, 1984)

General L-Matrix
Instance: An mxn matrix A.
Question: Is A an L-matrix?
(Klee, Ladner, and Manber, 1984)

Restricted L-Matrix
Instance: An (n+n1/k)xn matrix A.
Question: Is A an L-matrix?
(Klee, Ladner, and Manber, 1984)



NP-Hard Problems

Permanent Equals Determinant
Instance: A square matrix A.
Question: Does perm(A) = det (A)?
(Vazirani and Yannakakis, 1989)

Nonsingular Interval Matrix
Instance: An interval of matrices [A + cB, A - cB], 0 ≤ c ≤ 1.
Question: Is every matrix in the interval nonsingular?
(Poljak and Rohn, 1993)

The Even Cycle Problem and Equivalent Ones

Even Cycle (EVCY)
Instance: A directed graph G.
Question: Does G have an even cycle?

Even Trail
Instance: A directed graph G.
Question: Does G have an even trail?

Square L-matrix Problem (LMAT)
Instance: A square matrix A.
Question: Is A an L-matrix?
(Bassett, Maybee, and Quirk, 1968)

Even Digraph
Instance: A directed graph G.
Question: Is G even?
(Seymour and Thomassen, 1987)

Balanced Labelling
Instance: A directed graph G.
Question: Does G admit a balanced labelling?
(Klee, n. d.)
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Perfect Matching

Instance: An undirected, bipartite graph G.
Question: Does G have a perfect matching?
(Vazirani and Yannakakis, 1989)

Restricted Version of Permanent Equals Determinant
Instance: A square matrix A with non-negative entries.
Question: Does perm(A) = det (A)?
(Vazirani and Yannakakis, 1989)

Polya’s Problem
Instance: A square 0-1 matrix A.
Question: Can some entries be changed from +1 to –1 to obtain a new
matrix B for which det(B) = perm(A)?
(Vazirani and Yannakakis, 1989)
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